If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10a^2=49
We move all terms to the left:
10a^2-(49)=0
a = 10; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·10·(-49)
Δ = 1960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1960}=\sqrt{196*10}=\sqrt{196}*\sqrt{10}=14\sqrt{10}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{10}}{2*10}=\frac{0-14\sqrt{10}}{20} =-\frac{14\sqrt{10}}{20} =-\frac{7\sqrt{10}}{10} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{10}}{2*10}=\frac{0+14\sqrt{10}}{20} =\frac{14\sqrt{10}}{20} =\frac{7\sqrt{10}}{10} $
| x18=3 | | x8=3 | | 5x-7=-6(x+4)-5 | | 28x-7=-7+7(x+18) | | x+0.03x+60=100 | | b(b=17)=0 | | 10=4.9×a^2 | | {(4/2)^-3}*{(4/5)^-5}=(4/3)^3x | | 10=4.9*a^2 | | 25000=(4)^3x | | 5x-6x=3-5 | | 52x+3=12x=15 | | y/3+6y/4=y+9/2 | | X+x(20/100)=250 | | 10x-3+5=3x-2 | | 3m+7-8m=17 | | 63+8m=199 | | 10x-6=7×+9 | | 3x-1=2-x | | 1.14^t=5 | | 25^-3x-3=5^3 | | 25n-90=135 | | 170-x=3x | | 4x-3x+x+2x+3=10 | | -2n+5n=-6 | | -12+4c=6c-30 | | 8/u=13/17 | | 9p^2+67=3 | | 25z^2-140=29 | | 6/9=r/108 | | X/2-2=2-x | | 132x+5=92x19 |